
Physics 12-06 The Dual Nature of Light

- Light behaves as a wave
 - 0 _____
 - o _____
- Light behaves as a particle
 - o _____energy Blackbody radiation
 - o _____effect
 - 0 _____

Momentum of light

- Light from the sun pushes a _____tail away
- NASA is developing a _____spaceship that is pushed away from the sun using a sail that is hit by the _____
- When _____ are shot through atoms, then they ____ from hitting electrons
 - \circ The scattered electrons have ____energy than before because they gave some to the electron like a ____eollision

$$p = \frac{h}{\lambda} = \frac{hf}{c}$$

$L - m_0 c$. 200
p = 0	Scattered Phe $E = hf'$
. ' \	Scattle E = hf'
hoton 🕽	$\theta \qquad p = hf'/c$
~~~~~ <del>~</del>	10 1
الم	$\bigvee \phi$
Target —	$KE_e = hf - hf'$
electron	
at rest	p-p
Scattered	7
electron	
	p = 0 hoton  Target electron at rest Scattered

Calculate the momentum of a visible photon that has a wavelength of red light  $680\ nm$ .

Find the velocity of an electron with the same momentum.

What is the energy of the electron, and how does it compare with the energy of the photon?

# Particle-Wave Duality

- Light waves can act as _____
- Particles can act as
  - o Electrons can _____with each other
  - o Electron currents can ____out
- ______matter is both _____and _____

### Physics 12-06 The Dual Nature of Light

Name:

#### **Practice Work**

- 1. Why don't we feel the momentum of sunlight when we are on the beach? (HSP 21.8)
- 2. Describe one type of evidence for the wave nature of matter. (OpenStax C29.23)
- 3. Describe one type of evidence for the particle nature of EM radiation. (OpenStax C29.24)
- 4. In what region of the electromagnetic spectrum will photons be most effective in accelerating a solar sail? (HSP 21.19)
- 5. Terms like frequency, amplitude, and period are tied to what component of wave-particle duality? (HSP 21.44)
- 6. Upon collision, what happens to the frequency of a photon? (HSP 21.59)
- 7. How does the momentum of a photon compare to the momentum of an electron of identical energy? (HSP 21.60)
- 8. Large objects can move with great momentum. Why then is it difficult to see their wave-like nature? (HSP 21.66)
- 9. What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (HSP 21.26)
- 10. What is the momentum of a 500-nm photon? (HSP 21.42)
- 11. A 500-nm photon strikes an electron and loses 20 percent of its energy. What is the new momentum of the photon? (HSP 21.61)
- 12. A 500-nm photon strikes an electron and loses 20 percent of its energy. What is the speed of the recoiling electron? (HSP 21.62)
- 13. The wavelength of a particle is called the de Broglie wavelength, and it can be found with the equation,  $p = \frac{h}{\lambda}$ . Can the wavelength of an electron match that of a proton? Explain. (HSP 21.65) **Yes**